الدورة الإستثنائية للعام 2011	امتحانات الشهادة الثانوية العامة الفرع: علوم الحياة	وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات
الاسم: الرقم:	المدة ساعتان	

This exam is formed of three exercises in three pages. The use of a non-programmable calculator is allowed

First Exercise (6 ½ points)

Determination of the inductance of a coil

In order to determine the inductance L of a coil of negligible resistance, we connect this coil in series with a resistor of resistance $R=10~\Omega$ across the terminals of a generator G (Fig. 1). The generator G delivers an alternating sinusoidal voltage $u_{AD}=u_{G}=U_{m}\cos\omega t~(u_{G}\ in\ V,\ t\ in\ s).$ The circuit thus carries a current i.

- 1) Redraw a diagram of figure (1), showing on it the connections of an oscilloscope so as to display the voltage u_G across the terminals of the generator and the voltage $u_R = u_{BD}$ across the terminals of the resistor.
- 2) Which of these two voltages represents the image of i? Justify your answer
- 3) In figure 2, the waveform (1) represents the variation of u_G as a function of time.
 - Horizontal sensitivity: 5 ms/div.
 - Vertical sensitivity on both channels: 1 V/div.
 - a) Specify, with justification, which of the waveforms,(1) or (2), leads the other.

- *i.* The phase difference between these two waveforms.
- ii. The angular frequency ω .
- *iii.* The maximum value U_m of the voltage across G.
- *iv.* The amplitude I_m of i.

5) Determine the value of L by applying the law of addition of voltages and by giving t a particular value.

Second Exercise (7 points)

Acceleration of a particle

The object of this exercise is to determine the expression of the magnitude of the acceleration of a particle using two methods. The apparatus used is formed of two particles (S_1) and (S_2) of respective masses m_1 and m_2 , fixed at the extremities of an inextensible string passing over the groove of a pulley. (S_1) , (S_2) , the string and the pulley form a mechanical system (S).

The string and the pulley have negligible mass.

 (S_1) may move on the line of greatest slope AB of an inclined plane that makes an angle α with the horizontal AC and (S_2) hangs vertically.

At rest, (S_1) is found at point O at a height h_1 above AC and (S_2) is found at O' at a height h_2 (adjacent figure).

At the instant $t_0 = 0$, we release the system (S) from rest. (S₁) ascends on AB and (S₂) descends vertically. At an instant t, the position of (S₁) is defined by its abscissa $x = \overline{OS_1}$ on an axis x'Ox confounded with AB, directed from A to B.

Take the horizontal plane containing AC as a gravitational potential energy reference. Neglect all the forces of friction.

1) Energetic method

- a) Write down, at the instant $t_0 = 0$, the expression of the mechanical energy of the system [(S), Earth] in terms of m_1 , m_2 , h_1 , h_2 and g.
- **b**) At the instant t, the abscissa of (S_1) is x and the algebraic value of its velocity is v. Determine, at that instant t, the expression of the mechanical energy of the system [(S), Earth] in terms of m_1 , m_2 , h_1 , h_2 , x, v, α and g.
- c) Applying the principle of conservation of mechanical energy, show that :

$$v^{2} = \frac{2(m_{2} - m_{1} \sin \alpha)gx}{(m_{1} + m_{2})}$$

d) Deduce the expression of the value a of the acceleration of (S_1) .

2) Dynamical method

- a) Redraw a diagram of the figure and show, on it, the external forces acting on (S_1) and on (S_2) . (The tension in the string acting on (S_1) is denoted by \vec{T}_1 of magnitude T_1 and that acting on (S_2) is denoted by \vec{T}_2 of magnitude T_2).
- **b**) Applying the theorem of the center of mass $\Sigma \vec{F}_{ext} = m\vec{a}$, on each particle, determine the expressions of T_1 and T_2 in terms of m_1 , m_2 , g, α and α .
- c) Knowing that $T_1 = T_2$, deduce the expression of a.

Third Exercise (6 ½ points)

Provoked Nuclear Reactions

The object of this exercise is to compare the energy liberated per nucleon in a nuclear fission with that liberated in a nuclear fusion.

Given:

Symbol	${}_{0}^{1}$ n	$_{1}^{2}\mathrm{H}$	$_{1}^{3}\mathrm{H}$	⁴ ₂ He	²³⁵ ₉₂ U	$^{94}_{\rm Z}{ m Sr}$	^A ₅₄ Xe
Mass in u	1.00866	2.01355	3.01550	4.0015	234.9942	93.8945	138.8892

$$1u = 931.5 \text{ MeV/c}^2$$

A – Nuclear fission

The fission of uranium 235 is used to produce energy.

1) The fission of one uranium 235 nucleus takes place by bombarding this nucleus by a slow (thermal) neutron of kinetic energy around 0.025 eV .The equation of this reaction is written as:

$${}^{235}_{92}U + {}^{1}_{0}n \rightarrow {}^{94}_{Z}Sr + {}^{A}_{54}Xe + 3{}^{1}_{0}n$$

- a) Calculate A and Z specifying the laws used.
- b) Show that the energy E liberated by the fission of one uranium nucleus is 179.947 MeV.
- c) i) The number of nucleons participating in this reaction is 236. Why?
 - ii) Calculate then E_1 , the energy liberated per nucleon participating in this fission reaction.
- 2) Each of the obtained neutrons has an average kinetic energy $E_0 = \frac{E}{100}$.
 - a) In this case, the obtained neutrons do not, in general, provoke fission. Why?
 - b) What then should be done in order to obtain a fission reaction?

B - Nuclear fusion

Nowadays, many researches are performed in order to produce energy by nuclear fusion. The most accessible is the reaction between a deuterium nucleus ${}_{1}^{2}H$ and a tritium nucleus ${}_{1}^{3}H$.

- 1) The deuterium and the tritium are two isotopes of hydrogen. Write down the symbol of the third isotope of hydrogen.
- 2) Write down the fusion reaction of a deuterium nucleus with a tritium nucleus knowing that this reaction liberates a neutron and a nucleus ${}_Z^AX$. Calculate Z and A and give the name of the nucleus ${}_Z^AX$.
- 3) Show that the energy liberated by this reaction is E' = 17.596 MeV.
- 4) Calculate E'_1 the energy liberated per nucleon participating in this reaction.

C – Conclusion

Compare E_1 and E'_1 and conclude.

الدورة الإستثنانية للعام 2011	امتحانات الشهادة الثانوية العامة الفرع : علوم الحياة	وزارة التربية والتعليم العالي المديرية العامة للتربية
		دائرة الامتحانات
سم: قم:	المدة ساعتان	مشروع معيار التصحيح

First exercise (6 ½ points)

Part of the Q.	Answer	Mark
1	A i L Ch A G R Ch B	1/2
2	$u_R = Ri$, u_R is proportional to i.	1/2
3-a	u_1 becomes zero before u_2 , thus $u_1 = u_G$ leads i ($u_2 = u_R$ represents i).	1/2
3-b-i	$T \leftrightarrow 5 \text{ div } \leftrightarrow 2\pi \text{ rad}$ $0.63 \text{ div } \leftrightarrow \phi \Rightarrow \phi = 2\pi \times \frac{0.63}{5} = 0.79 \text{ rd}$	3/4
3-b-ii	$T = 5 \text{ (div)} \times 5 \text{ ms/div} = 25 \text{ ms}$ $\omega = \frac{2\pi}{T} = 251.3 \text{ rad/s}$	1/2
3-b-iii	$Um = 4 (div) \times 1 V/div = 4 V$	1/2
3-b-iv	$U_{Rm} = 2.8 \times 1 = 2.8 \text{ V}$ $\Rightarrow I_m = \frac{U_{Rm}}{R} = \frac{2.8}{10} = 0.28 \text{ A}$	3/4
3-с	i lags u_G by 0.79 rad; i = $I_m \cos(\omega t - 0.79)$ i = 0.28 $\cos(80\pi t - 0.79)$	1/2
4	$u_L = L \frac{di}{dt} = -70.37L \sin(80\pi t - 0.79)$	1
5	$\begin{split} u_G &= u_R + u_L = Ri + u_L \\ 4\cos{(80\pi\ t)} &= 2.8\cos{(80\pi\ t - 0.79)} - 70.37L\sin{(80\pi\ t - 0.79)} \\ For\ t &= 0\ ;\ L = 0.04\ H = 40\ mH. \end{split}$	1

Second exercise (7 points)

Part of the Q	Answer	Mark
1.a	$M.E = K.E_1 + P.E_{g1} + K.E_2 + P.E_{g2} = 0 + m_1gh_1 + 0 + m_2gh_2$	1/2
1.b	$\begin{split} M.E &= KE_1 + P.E_{g1} + K.E_2 + P.E_{g2} \\ M.E &= \frac{1}{2} m_1 v^2 + m_1 g \ (h_1 + x sin\alpha) + \frac{1}{2} m_2 v^2 + m_2 g \ (h_2 - x) \end{split}$	1
1.c	$\frac{1/2 \text{ m}_1 \text{v}^2 + \text{m}_1 \text{g} (\text{h}_1 + \text{x} \sin \alpha) + \frac{1}{2} \text{ m}_2 \text{v}^2 + \text{m}_2 \text{g} (\text{h}_2 - \text{x}) = \text{m}_1 \text{gh}_1 + \text{m}_2 \text{gh}_2}{\text{m}_1 + \text{m}_2 \text{gh}_2}$ $\Rightarrow \frac{1}{2} (\text{m}_1 + \text{m}_2) \text{ v}^2 = (\text{m}_2 - \text{m}_1 \sin \alpha) \text{ gx} \Rightarrow \text{v}^2 = \frac{2(\text{m}_2 - \text{m}_1 \sin \alpha) \text{gx}}{(\text{m}_1 + \text{m}_2)}.$	3/4
1.d	Derive the expression of v^2 w.r.t time, we get: $2va = \frac{2(m_2 - m_1 \sin \alpha)g}{(m_1 + m_2)} v \Rightarrow a = \frac{(m_2 - m_1 \sin \alpha)g}{(m_1 + m_2)}.$	1
A.2.a	\vec{T}_1 \vec{T}_2 \vec{T}_2 \vec{T}_2 \vec{T}_2	11/4
2.b	The relation $\Sigma \vec{F}_{ext} = m_1 \vec{a}_1$ applied on S_1 gives: $\vec{m}_1 g + \vec{N}_1 + \vec{T}_1 = m_1 \vec{a}_1$ (1) Projecting (1) on the axis $\vec{o} \vec{x}$ we get: $-m_1 g \sin \alpha + T_1 = m_1 a_1 \Rightarrow T_1 = m_1 g \sin \alpha + m_1 a$ (with $a_1 = a_2 = a$). The relation $\Sigma \vec{F}_{ext} = m_2 \vec{a}_2$ applied on S_2 gives: $m_2 \vec{g} + \vec{T}_2 = m_2 \vec{a}_2$ (2) Projecting (2) on the vertically downward axis we get: $m_2 g - T_2 = m_2 a_2 \Rightarrow T_2 = m_2 g - m_2 a$.	2
2.c	The relation $T_1 = T_2$ gives: $m_1 g \sin \alpha + m_1 a = m_2 g - m_2 a$ $\Rightarrow a = (\frac{m_2 - m_1 \sin \alpha}{m_1 + m_2})g.$	1/2

Third exercise (6 ½ points)

Part of	Answer	Mark
the Q		
A.1.a	Conservation of nucleons number: $235 + 1 = 94 + A + 3$ then $A = 139$	1
	Conservation of charge number: $92 = Z + 54$ then $Z = 38$	
A.1.b	$E = \Delta mc^2$	1
	$= (234.9942 + 1.00866 - 93.8945 - 138.8892 - 3 \times 1.00866) \times 931.5$	
	\Rightarrow Energy = 179.947 MeV	
A.1.c.i	We have $235+1 = 236$ nucleons	1/4
		/-
A.1.c.ii	_ 179.947	1/4
	$E_1 = \frac{179.947}{236} = 0.76 \text{ MeV/nucleon}$, ·
A.2.a		1/
11.2.4	$E_0 = \frac{179.947}{100} = 1.79947$ MeV; which is much greater than 0.025 eV	$1/_{2}$
A.2.b	They should be slowed down,	1/4
B.1	¹ H	1/4
B.2	${}_{1}^{2}H + {}_{1}^{3}H \rightarrow {}_{Z}^{A}X + {}_{0}^{1}n$	1
	2+3 = A + 1 then $A = 4$ $1+1 = Z$ then $Z = 2$	
	The helium nucleus ⁴ ₂ He	
B.3	$E' = \Delta mc^2 = (2.01355 + 3.0155 - 4.0015 - 1.00866) \times 931.5 = 17.596 \text{ MeV}$	1
B.4	We have $2 + 3 = 5$ nucleons $\Rightarrow E'_1 = \frac{17.596}{5} = 3.5912$ MeV/nucleon	1/2
С	E'_1 is greater than E_1 ; fusion is more efficient.	1/2